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ABSTRACT

Short Messaging Service (SMS) based mobile information
services have become increasingly common around the world,
especially in emerging regions among users with low-end mo-
bile devices. This paper presents the design and implemen-
tation of SMSFind, an SMS-based search system that en-
ables users to obtain extremely concise (one SMS message
of 140 bytes) and appropriate search responses for queries
across arbitrary topics in one round of interaction. SMS-
Find is designed to complement existing SMS-based search
services that are either limited in the topics they recognize
or involve a human in the loop.

Given an unstructured search query, SMSFind, uses a con-
ventional search engine as a back-end to elicit several search
responses and uses a combination of information retrieval
techniques to extract the most appropriate 140-byte snippet
as the final SMS search response. We show that SMSFind
returns appropriate responses for 57.3% of ChaCha search
queries in our test set; this accuracy rate is high given that
ChaCha employs a human to answer the same questions.
We have also deployed a pilot version of SMSFind for use
with a small focus group in Kenya to explore the interaction
issues of such a system and share our early experiences.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems—Distributed Applications; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrie-
val—Search Process; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Question-answering (fact-
retrieval) systems

General Terms

Algorithms, Design, Experimentation
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1. INTRODUCTION
The exceptional growth of the mobile phone market has

motivated the design of new forms of mobile information
services. With the growth of Twitter [1], SMS GupShup [2]
and other social messaging networks, the past few years have
witnessed a growing prevalence of Short-Messaging Service
(SMS) based applications and services. SMS-based services
are also increasingly common in developing regions. Despite
the increasing power of mobile devices with the advent of
“smart phones”, a significant fraction of mobile devices in
developing regions are still simple low-cost devices with lim-
ited processing and communication capabilities. Due to a
combination of social and economic factors, voice and SMS
will likely continue to remain the primary communication
channels available for a non-trivial fraction of the popula-
tion in developing regions.

For any SMS-based web service, efficient SMS-based search
is an essential building block. SMS-based search is a rapidly
growing global market with over 12 million subscribers as
of July 2008 [3]. An SMS message is constrained to 140
bytes which drastically limits the amount of information in
a search response. SMS-based search is also non-interactive
due to the search response time; anecdotally [4], existing
SMS-based search engines take on the order of tens of sec-
onds [5, 6] to several minutes per response [7]. Even without
the 140-byte SMS size constraint, tailoring traditional web
search to mobile devices is a challenging problem due to
the small form factor and low bandwidth. Unlike desktop
search, users on mobile devices rarely have the luxury of it-
eratively refining search queries or sifting through pages of
results for the information they want [8]. In this paper, we
address the problem of SMS-based search: how does a mo-
bile user efficiently search the Web using one round of in-
teraction where the search response is restricted to one SMS
message?

Though we do not know the internals of existing SMS
search algorithms, we can observe from the user interface
and documentation that existing automated services for SMS
web search such as Google SMS [5] and Yahoo! oneSearch [6])
encourage users to enter queries for a number of pre-defined
topics, or verticals. These pre-defined topics are either iden-
tified through the use of special keywords within the search
query such as “define” or “movies” (e.g. Google SMS: “de-
fine boils”) or have specialized parsers to determine which
of the topics is intended (e.g. querying “AAPL” to Yahoo!
oneSearch is a query for information about “stock quote”).
ChaCha [7], a recent SMS-based search engine, hires hu-
mans to search the web and answer questions in an SMS
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response. TradeNet, now called eSoko [9], is a mobile mar-
ketplace platform in Ghana which would require an SMS
based search service as well. Instant access to small bits of
information is the motivation behind all of the existing SMS
based search systems and of this work.

None of the existing automated SMS search services is a
complete solution for search queries across arbitrary topics.
Similar to traditional web search queries, SMS search queries
suffer from the long tail phenomenon: there exists a long tail
of search queries whose topics are not popular (e.g. “what
are graduation gift ideas?” or “what chemicals are in a fire
extinguisher”). We confirm that this indeed is the case in our
sample of ChaCha questions where only 21% of the queries
in our data set are verticals and 79% are long tailed.

In this paper, we describe the design and implementa-
tion of SMSFind, an SMS-based search engine specifically
designed for the long tail of search queries that are spread
across a wide range of topics. These topics represent the
queries in a mobile search workload that are not answered
by existing domain specific verticals. SMSFind is designed
to integrate into an existing SMS search service to answer
queries for unsupported long tail topics. Given a query,
SMSFind uses a traditional search engine as a back-end to
elicit several search results and extract the appropriate 140
bytes as the SMS search response. Section 6.2 further ex-
plains how vertical and long tail queries are defined in this
work.

SMSFind uses a combination of well-known information
retrieval techniques to address the appropriate information
extraction problem. SMSFind is designed for unstructured
queries supporting a similar format as a standard search en-
gine query. The key idea of SMSFind is that meaningful
SMS queries typically contain a term or a collection of con-
secutive terms in a query that provides a hint as to what the
user is looking for. The hint for a query can either be explic-
itly provided by the user or automatically derived from the
query. SMSFind uses this hint to address the information
extraction problem as follows: Given the top N search re-
sponses to a query from a search engine, SMSFind extracts
snippets of text from within the neighborhood of the hint
in each response page. SMSFind scores snippets and ranks
them across a variety of metrics.

We have evaluated SMSFind on a corpus of questions
screen gathered from the website of the ChaCha SMS ques-
tion/answering service. The ChaCha search queries are in
question-style format which we converted to unstructured
query format using a set of transformation rules. Based on
extensive evaluation and human verification, we show that
SMSFind can answer 57.3% of ChaCha queries. This is a
significant result because these questions are currently be-
ing answered manually by humans. There are still questions
that are difficult to answer using statistical methods such
as, “do they kill horses to make glue” (as we discuss in Sec-
tion 7.2), but to the best of our knowledge this is the first
effort that addresses the problem of SMS-based search for
long tail mobile queries.1

1Google Squared [10] appears to be working toward this as
well, but the technical approach and how it relates to SMS
search is unclear from the publicly available information at
this time.

2. RELATED WORK
While there has been relatively little research on SMS-

based search, in this section, we take a slightly larger view
of the problem space and contrast SMSFind with mobile
search services, question/answering (Q/A) systems from the
Text REtrieval Conference (TREC) community [11], and
text summarization techniques.

2.1 Mobile Search Characteristics
Mobile search is a fundamentally different search paradigm

than conventional desktop search. Yet, we continue to view
mobile web search as either an extension of the desktop
search model for high-end phones (such as PDA/iPhone) or
a slightly restricted version via XHTML/WAP on low-end
devices. Mobile search in both of these settings differs from
traditional desktop search in several ways as shown in recent
studies by Kamvar et al. [12, 13]. The first study [12] found
that the mobile search click-through rate and the search page
views per query were both significantly lower in comparison
to desktop search. Meaning, most mobile search users tend
to use the search service for short time-periods and are ei-
ther satisfied with the search engine snippet responses or do
not find what they were looking for. The study also found
that the persistence of mobile users was very low indicating
that the vast majority of mobile searchers approach queries
with a specific topic in mind and their search often does not
lead to exploration. The second study [13] showed that the
diversity of search topics for low-end phone users was much
less than that of desktop or iPhone-based search. This re-
sult suggests that the information needs are broad, but are
not satisfied by the information services available on low-end
phones. We find corroborating evidence in our analysis of
ChaCha queries that mobile question diversity across top-
ics is high given a more expressive input modality such as
voice. As a whole, these studies indicate a pressing need
for rethinking the current mobile search model for low-end
mobile devices.

2.2 SMS-based Search Services
SMS-based search is very different from conventional mo-

bile search via XHTML/WAP. An attractive aspect of SMS-
based search is the lower barrier to entry of SMS (in com-
parison to other data services) due to the use of low-end
phones and widespread availability of SMS. In developing
countries, SMS is the most ubiquitous protocol for informa-
tion exchange next to voice. In addition, there is specula-
tion that “the economic downturn will most likely dampen
growth for the more luxury-based mobile services, but SMS
is expected to continue its growth as it is popular, cheap,
reliable and private.” [14].2 Many of the top search engine
players like Google [5], Yahoo! [6], and Microsoft [15] have
entered the SMS search market and developed their own ver-
sions of SMS-based search services. All these services have
been tailored for very specific topics (e.g. directory, weather,
stock quotes) and specialized in nature.

These automated services are not the only ones available.
ChaCha [7] and Just Dial [16] (in India) are SMS- or voice-
based question/answering systems using a human to respond
to queries. The queries to ChaCha and JustDial are in nat-
ural language question form, interpreted by a human who

2Most notably by Nielsen [3], but also by other private mar-
ket research firms [14].
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looks for the solution online, and responds with an answer
via an SMS. A recent private study by mSearchGroove [4]
comparing the accuracy of responses of these services has
shown that the automated systems suffered from low accu-
racy when satisfying an arbitrary set of queries: Google SMS
22.2%, Yahoo! oneSearch 27.8%, as compared to 88.9% for
ChaCha. However, the study also observed that the median
response time for the automated services was on the order
of 10-14.5 seconds, whereas the median response time for
ChaCha was 227.5 seconds. Involving a human in the loop
drastically increases response time.

The problem we seek to answer is how do we build a sys-
tem that achieves the best of both worlds: an SMS search
system that is both a fast (automatic) and provides accu-
rate query responses? One reason this problem is hard is
that search queries are inherently ambiguous, yet return-
ing a disambiguated result is especially vital to SMS search
queries for various reasons [8].

2.3 Question/Answering Systems
The problem that SMSFind seeks to address is similar to,

but distinct from, traditional question/answering systems
developed by the Text REtreival Conference (TREC) [17]
community. TREC has evolved into many separate tracks
devoted to specific areas such as: simple ad-hoc tasks, ques-
tion/answering tasks, million query tasks, etc. Nevertheless,
our problem is different from each of the TREC tracks for
at least one of three dimensions: (a) the nature of the input
query; (b) the document collection set; (c) the nature of the
search results in the query response. These three dimensions
are derived by Carmel et. al. [18] in a model for assessing
query difficulty.

First, from the input query standpoint, SMSFind is pri-
marily suited for unstructured search style queries. SMS-
Find can be extended for simple natural language style quer-
ies using existing query transformation techniques as we dis-
cuss later. The distribution of the queries is also dependent
on the mobile context (i.e. SMS or voice queries as opposed
to Desktop search queries or iPhone queries). Second, SMS-
Find is a snippet extraction and snippet ranking algorithm
which outputs condensed text snippets in existing pages as
search responses. Third, the most notable differences of our
problem in comparison to many TREC tracks is that in
SMSFind the collection of documents being searched over is
a set of heterogeneous, “noisy”, and hyper-linked documents
(web pages) indexed by Google. In contrast, the TREC ad-
hoc track and TREC question/answering tracks have until
recently used a collection of newswire documents which are
very clean, and blog documents which have some noise [19].
Newswire and blog collections are also not hyper-linked and
are several orders of magnitude smaller than the web. Prior
work suggests that the size of the collection affects how well
link analysis techniques may be useful to information re-
trieval [20]. More recently the TREC web, terabyte [21], and
million query [22] tracks have used hundreds of millions of
web pages as the document collection to allow for link anal-
ysis techniques to be applied toward the tasks, and there
have been many systems that leverage the web for either
the main or auxiliary corpus. The fact that the collection
is at least two orders of magnitude greater than any TREC
evaluation, significantly noisier in terms of information di-
versity, formatting, and being hyper-linked means that it is
a different (and more challenging) problem, which leads us

Figure 1: System architecture

to adopt a different solution. The earliest and most closely
related system to SMSFind in terms of architecture and ap-
proach is AskMSR [23]. AskMSR also leveraged the data
redundancy of the web as opposed to sophisticated linguis-
tic techniques to extract n-gram answers.

SMSFind shares techniques with prior systems [24, 23,
25], but is designed specifically for the unique requirements
of SMS search in terms of its input and output. SMSFind
expects mobile search queries along with a hint and returns
snippets whereas existing systems may expect natural lan-
guage questions and return n-grams or entire paragraphs
and possibly the source document.

2.4 Automatic Text Summarization
Snippet extraction is also tangentially related to summa-

rization, but only to the extraction task (finding sections
of the text and producing them verbatim), and not the ab-
straction task (producing material in a new way). However,
the main difference is the goal of these two problems. The
goal of extraction is still to summarize the contents of one
or more documents. The goal of snippet extraction in SMS-
Find is to find the correct answer to a query. For this reason,
our problem is more similar to information retrieval. That
said, many of the of the techniques are used in both areas
of research including: Naive-Bayes methods [26], Rich fea-
tures [27], and other statistical methods.

3. SMSFIND PROBLEM
The architecture of our SMS search system (Figure 1)

consists of a query server that handles the actual search
query and results, and an SMS gateway that is responsi-
ble for communication between the phone clients and the
query server. The client is a user with a mobile phone who
sends an SMS message to the short code (a special telephone
number, shorter than full telephone numbers used to address
SMS and MMS messages) for our service, which arrives at
the SMS gateway and is then dispatched to our server for
processing. At our query server the query is then sent to a
general search engine and result pages are downloaded. The
query server extracts the results from the downloaded pages,
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and returns them to the SMS gateway which sends it back
to the client that issued the request.

3.1 Known Verticals vs Long Tail
Certain SMS based queries are best answered by querying

known verticals (e.g., flights, directions, weather). Google
SMS search may be viewed as a wrapper around its search
service for a fixed set of known categories such as phone
numbers, weather, flight information, address etc. Our com-
plete SMS search service consists of appropriate parsers and
vertical redirectors for a few known categories (phone num-
bers, weather, addresses). For instance, weather.com and
yellow.com are examples of such verticals for weather and
yellow pages. For these categories with existing verticals,
generating an SMS search response requires a simple trans-
formation of the query into an appropriate database query
(or filling a form) at the corresponding vertical web portal.

The focus of SMSFind is to handle long tail queries that
do not fit into verticals. Handling queries for verticals is a
relatively straightforward if tedious process and suffers from
rapidly diminishing returns. Our complete SMS search ser-
vice supports a basic set of vertical topics which is a sub-
set of the Google SMS topics. As a part of this system,
the SMSFind algorithm is placed behind a categorizer that
first determines whether a given query belongs to an imple-
mented vertical based on the existence of defined keywords
or if it should be sent to SMSFind.

3.2 SMSFind Search Problem
SMSFind is designed for unstructured search queries across

arbitrary topics. Given any query, SMSFind first uses an
existing search engine as a back-end to obtain the top few
search result pages. Using these pages the remaining prob-
lem is to parse the textual content to obtain the appropriate
search response that can be condensed to one SMS message.
This is essentially a problem of determining appropriate con-
densed snippets of text across the result pages that form
candidate SMS search responses. We define a snippet as any
continuous stream of text that fits within an SMS message.

SMSFind uses a hint for every query as an important clue
to mine every result page for appropriate text snippets. A
hint refers to either a term or a collection of consecutive
terms within the query that is roughly indicative of what
type of information the user is searching for. Given that
the hint will appear in the response page, SMSFind uses
the neighborhood of the text around the hint to mine for
appropriate textual snippets. To explain our problem and
algorithm we assume that the hint is given by the user explic-
itly, but later we discuss how the hint may be automatically
extracted from natural language questions.

The SMSFind search problem can be characterized as fol-
lows:

Given an unstructured SMS search query in the form of
<query, hint> and the textual content of the top N search
response pages as returned by a search engine, extract a con-
densed set of text snippets from the response pages that fit
within an SMS message (140 bytes) that provide an appro-
priate search response to the query.

This problem definition explicitly assumes that the hint
is specified for every query. Existing SMS-based search ser-
vices like Google SMS have a similar explicit requirement
where a keyword is specified as the last term in a query;
the difference being that the existing systems only support

a fixed set of keywords whereas SMSFind allows arbitrary
hints.

4. SMSFIND SEARCH ALGORITHM
In this section, we describe our algorithm to extract snip-

pets for any given unstructured query of the form <query,
hint>.

4.1 Basic Idea
Search queries are inherently ambiguous and a common

technique to disambiguate queries is to use additional con-
textual information from which the search is being con-
ducted [28, 29]. Loosely, the term“context”is any additional
information associated with a query that provides a useful
hint in providing a targeted search response for a query [30,
31]. Similar to these works, SMSFind uses an explicit hint
so the snippet extraction algorithm can identify the approxi-
mate location of the desired information in a search response
page.

We motivate the use of a hint using a simple example of
a long tail query. Consider the query “Barack Obama wife”
where the term“wife” represents the hint. When we give this
query to a search engine, most search result pages will con-
tain “Michelle” or “Michelle Obama” or “Michelle Robinson”
or “Michelle Lavaughn Robinson” within the neighborhood
of the word “wife” in the text of the page. For this query,
to determine any of these as appropriate search responses,
SMSFind will search the neighborhood of the word “wife” in
every result page and look for commonly occurring n-grams
(where n represents one to five consecutive words). For ex-
ample, “Michelle Obama” is a n-gram which is a 2−gram.

A simple algorithm to determine the correct answer to
this example query is to output all popular n-grams within
the neighborhood of the hint and rank them based on differ-
ent metrics (frequency, distance etc.). However, outputting
commonly occurring n-grams as search responses is only ap-
propriate when the actual search response for a query is a
1−5 word answer. For several common SMS-search queries,
the actual appropriate search response is embedded in a sen-
tence or a collection of few sentences. In such cases, we need
to extract entire snippets of text as a search response as op-
posed to just n-grams.

SMSFind makes a clear distinction between n-grams and
snippets. Though both represent continuous sequences of
words in a document, a n-gram is extremely short in length
(1− 5 words), whereas a text snippet is a sequence of words
that can fit in a single SMS message. In our SMSFind al-
gorithm, n-grams are used as an intermediate unit for our
statistical methods whereas snippets are used for the final
ranking since they are appropriately sized for SMS.

We next describe the basic SMSFind algorithm. Consider
a search query (Q,H) where Q is the search query contain-
ing the hint term(s) H . Let P1, . . . PN represent the textual
content of the top N search response pages to Q. Given
(Q, H) and P1 . . . PN , the SMSFind snippet extraction algo-
rithm consists of three steps:

Neighborhood Extraction: For each result page Pi, SMS-
Find searches for each appearance of the hint term H and
extracts a textual neighborhood around the hint which rep-
resents a candidate snippet of length covering one SMS mes-
sage in either side of the hint. For each snippet, we extract
all unique n-grams with up to 5 words. The choice of the
limit 5 is motivated by the fact that the Linguistic Data
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Figure 2: Snippet creation, aggregation into snippet
tiles, and n-grams

Consortium (LDC) [32] publishes the web frequency of ev-
ery n-gram with up to 5 words.

N-gram Ranking: We rank the n-grams based on three
metrics: distance to the hint, frequency of occurrence, and
mean rank of the result page. We also use the relative rarity
of a n-gram on the web to normalize the n-gram ranking.

Snippet Ranking: We define the rank of any snippet as a
cumulative sum of the top-few ranked n-grams within the
snippet. Among all snippets, we determine the top-ranked
snippet(s) as the search response.

We now elaborate upon these three steps.

4.2 Neighborhood Extraction
Given a query (Q, H) and its result pages P1, . . . PN , SMS-

Find first extracts snippets around the hint H in each of
the pages. For each page Pi, we find every occurrence of
the hint H in the page. Each snippet is up to 140 bytes
long and the hint is as centered as much as the surrounding
text allows. We found that delineating snippets by sentence
boundaries lead to many corner cases due to noise that could
skew the statistical results. The snippets are then merged
if they overlap to avoid double counting into snippet tiles
(Figure 2). These snippet tiles form the basis of all further
measurements and calculations, and it is only within these
snippet tiles that the final result is extracted.

From a practical standpoint of not needing to download
several pages and having sufficient diversity to extract n-
grams and snippets, we found that a value of N = 10 works
well. We extract the text from these web pages by filtering
out all scripts, hypertext tags, and non-ASCII symbols so
we are left with plain text which is similar to what would
be rendered by a standard browser.

4.3 N-gram Ranking
N-gram ranking is a critical step in the SMSFind snippet

extraction algorithm. Given any snippet extracted around
the hint, the first step in our n-gram ranking algorithm is to
gather all possible n-grams in the snippet. Table 1 illustrates
briefly how the n-grams are generated. The goal of the n-
gram ranking algorithm is finding the n-grams that are most
likely to be related to the correct response.

The basic rationale of our n-gram ranking algorithm is
that any n-gram which satisfies the following three proper-

Table 1: Slicing example for the text “the brown
cow jumped over the moon”, hint = “over”
N-gram Frequency Min. Dis-

tance

“the” 2 1
“the brown” 1 3
“the brown cow” 1 2
“brown cow jumped” 1 1
... - -

ties is potentially related to the appropriate response for a
query with a specified hint:

1. the n-gram appears very frequently around the hint.

2. the n-gram appears very close to the hint.

3. the n-gram is not a commonly used popular term or
phrase.

As an example, the n-gram “Michelle Obama” is not a
commonly used phrase and appears relatively frequently and
in close proximity of the hint “wife” for the top search re-
sponse pages to the query “Barack Obama wife”. Therefore,
this n-gram is highly relevant for the search response for the
query.

For each unique n-gram in any snippet, we compute three
independent measures:

Frequency - The number of times the n-gram occurs across
all snippets.

Mean rank - The sum across every occurrence of a n-gram
of the PageRank of the page in which it occurs, divided
by the n-gram’s raw frequency. This is to incorporate the
ranking system of the underlying search engine in our overall
ranking function. (Some n-grams have a raw mean rank of
less than 1 because the page containing the search results is
assigned a rank of 0.)

Minimum distance - The minimum distance between a
n-gram and the hint across any occurrences of both. Intu-
itively, this metric indicates the proximity of the hint defined
by the user is to the search query. It is used as a part of
our overall ranking function to allow the user hint to disam-
biguate two otherwise similarly ranked n-grams.

An example of the metrics we have at this point is shown
in Table 2. In this example, the query “the office dwight ac-
tor” should return the response “rainn wilson” as highlighted
in the table. Note that this example is exactly in the range
of queries that we are interested in, it is too rare for a cus-
tom extractor and common enough to be detectable by our
system. From the list of n-grams we can observe that after
slicing, most of the top results are highly relevant to the
query according to our metrics.

Filtering n-grams: Before ranking n-grams, we filter
the set of n-grams based on the three measures: frequency,
mean rank and minimum distance. A n-gram should have
a minimum frequency and should be within a certain min-
imum distance of the hint to be considered. For N = 10,
we set a minimum frequency bound of 3 and a minimum
distance threshold of 10; we choose these thresholds exper-
imentally based on manual analysis of n-grams across sam-
ple queries. Similarly, we ignore all n-grams with a very low
mean PageRank.

Ranking n-grams: Associating relative importance to
any of the metrics or naively ranking based on a single met-
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Table 2: List of top 10 n-grams results for the query“the office dwight actor” and their associated raw metrics
prior to normalization

N-gram Frequency Minimum Distance Mean Rank

wilson 16 1 1.5
rainn 16 1 1.25
rainn wilson 15 1 1.33
dwight schrute 9 2 0.78
schrute 9 2 0.77
actor rainn wilson 7 0 1.14
plays dwight 7 2 0.57
actor rainn 7 0 1.14
wilson who plays 5 2 0.8

ric is not appropriate. To combine the different metrics into
a single metric we perform two simple steps. First, we nor-
malize the raw frequency, mean rank, and minimum dis-
tance to a uniform distribution within the range between 0
and 1. We denote the three normalized scores of a n-gram
s as freq(s), meanrank(s), mindist(s). Second, the overall
ranking score of a n-gram s is a linear combination of the
three normalized ranks:

rank(s) = freq(s) + meanrank(s) + mindist(s)

We use the ranking score to rank all n-grams associated
with a query. We need to consider one important detail in
the normalization of the frequency score. If two n-grams
s, t have the same frequency measure but if n-gram s has
a much lower web frequency than n-gram t (s is rarer than
t), then s needs to be higher ranked than t. We use the
“Web 1T 5-gram Version 1” dataset from the LDC to obtain
the frequency for any n-gram and compute its normalized
frequency.

4.4 Snippet Ranking Algorithm
If the answer to a query is a very short response of a

few words, then the best SMS based search response is to
output all the top-ranked n-grams associated with a query.
However, given a query, it is hard to determine whether
the answer is embedded in a single n-gram or is actually
a combination of multiple n-grams. Our best bet in such
a scenario is to output the best possible snippet under the
hope that the answer is embedded in the snippet and the
user can interpret it.

The n-gram ranking algorithm cannot be extended to rank-
ing snippets since almost all of the snippets are unique, and
their frequency measure will be 1. We extend the n-gram
ranking algorithm to compute the rank of snippets based on
the n-grams present within a snippet. In addition, differ-
ent snippets may contain different number of n-grams which
may introduce a bias in the ranking function. To avoid such
a bias, we introduce a top-K n-grams based ranking func-
tion.

Snippet rank: Consider a snippet S with a set of n-
grams T = {t1, . . . tm} with corresponding n-gram ranks
rank(t1), . . . rank(tm). Let ti1 , . . . tiK

represent the top K

ranked n-grams in T . Then the rank of snippet S is:

rank(S) =

j=K
X

j=1

rank(tij
)

In other words, we define the rank of a snippet based on

the cumulative rank of the top-K ranked n-grams within
the snippet. In practice, we choose K = 5. In the snippet
ranking phase, we determine the highest ranked snippet is
the most relevant response to the original query. Recall that
our snippets were designed to be under 140 bytes, but the
snippet tiles may actually be longer depending on overlaps
during the merging process. To find the best snippet, we
first split each snippet tile into snippets using a 140 byte
sliding window across each snippet tile that respects word
boundaries. We then score each snippet based on the sum
of the top K n-grams and return the top scoring snippet as
the final result.

In the evaluation, we show that ranking n-grams first be-
fore ranking snippets is critical for better accuracy; in other
words, directly scoring snippets from the web page results
without using n-grams performs very poorly in practice.

4.5 Hint Extraction from the Query
We have thus far assumed that every query is associated

with a hint, and for unstructured queries it is a natural ten-
dency for the user to enter the hint either at the beginning
or at the end. However, even if questions are entered in nat-
ural language format, extracting the hint automatically is
not difficult. We describe a simple rule-based approach for
deriving the hint for natural language question-style queries
as a proof of concept. The approach we use is similar to
surface pattern matching techniques [25].3

A cursory analysis of a sample of 100, 000 queries from
ChaCha SMS-based search queries reveals that a large frac-
tion of queries use common syntactic structures where the
hint is easily identified. Nearly 95% of ChaCha search queries
are English questions with 14 terms or less (75% of queries
contain less than 10 terms). Based on the structure of the
question, we have categorized a common class of questions
and their corresponding transformation rules to determine
the hint.

We found that that nearly 45% of the queries began with
the word“what”, of which over 80% of the queries are in stan-
dard forms (e.g. “what is”, “what was”, “what are”, “what
do”, “what does”). For each of these patterns, we can write a
simple transformation rule to extract the hint from the cor-
responding sentence which is typically either immediately
after the question or toward the end of the sentence. For
example, for the query “what is a quote by ernest heming-

3More generally, determining what a natural language ques-
tion is “about” has been studied, and there has been exten-
sive work on question classification which is related to this
problem [33].
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way”, the “what is X” pattern uses a simple matching rule
to extract the hint term “quote” (if “a” is ignored as a stop
word). The remaining terms minus stop words are then used
as the query, and the final <query, hint> is: <“ernest hem-
ingway”, “quote”>.

5. IMPLEMENTATION
The core SMSFind algorithm is implemented in only 600

lines of Python code and uses publicly available parsing li-
braries. We have not implemented any optimizations or
caching, but SMSFind generally returns results within 5-10
seconds while running on a 1.8Ghz Duo Core Intel PC with
2 GB of RAM and a 2 Mbps broadband connection. This
response time is dominated by the time required to fetch
query results from Google and download web pages referred
to by the results. To deploy SMSFind as a search service we
implemented a front-end to send and receive SMS messages.
We setup a SMS short code with a local telco in Kenya, and
route all SMS requests and responses to and from our server
machine running the service across a Samba 75 GSM modem
and Kannel an open source SMS Gateway [34]. As a proof of
concept, and to improve the overall usability of our system
we have also implemented interfaces to several basic verti-
cals as a part of the service including: weather, definitions,
local business results, and news. Each of these interfaces to
verticals is under 150 lines of Python code. We are still it-
erating with our focus group on the implementation details
of our system.

6. EVALUATION
Completely evaluating such a system is non-trivial; a large

set of realistic queries must be asked, and answers must be
judged either by judges or the users themselves. We derive
a realistic set of queries by modifying real ChaCha queries.
We then evaluate our system performance in absolute terms
to explore the limitations of our system and potential im-
provements.

In our evaluation, the answers returned by SMSFind are
judged correct if the all of the correct answer terms ap-
pear anywhere in the returned snippet. The correct answers
were first decided by three judges who came up with cor-
rect answers by manual inspection of each question, refer-
ring to the ChaCha answer for reference. Sometimes even
the ChaCha answer was considered incorrect by the judges
and a different answer was determined online and used in-
stead. There were also queries that had several acceptable
answers, we consider all of those “correct” in our evalua-
tion. This is the simple rating system we use throughout
the evaluation. We do not currently rank our scores based
on other important features such as readability or clarity.
For a full-fledged question/answering system, incorporating
mechanisms to improve readability [35] would likely be nec-
essary.

6.1 Data
Our set of queries consists of a corpus of 100,000 real SMS

search queries scraped from ChaCha’s [7] public website on
June 1, 2009. These queries are in Natural Language ques-
tion format. In contrast to the logs analyzed previous stud-
ies we found in our data an average of 9.20 words per query
and 47.09 characters per query, as compared to 3.05 and
18.48 respectively reported in [36]. The TREC [37] ques-
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Figure 3: ChaCha number of questions per category
as published on ChaCha’s website [7]

tion/answering track datasets are based on search engine
queries, and TREC-9 datasets were actual users’ questions.
However, it is unclear whether they were gathered from mo-
bile devices. From previous studies it is evident that mobile
search logs have significant differences across many charac-
teristics depending on the search medium and device [12,
13]. Queries from ChaCha are mobile (either voice or SMS)
and the answers are constructed by a human and returned
via SMS. Therefore, we elected to use the ChaCha dataset
due to its high realism for query types and their distribution
across topics in a mobile setting. We only use all 100,000
queries for our aggregate analysis of query length and topic
distributions. Since our evaluation consists of both rewrit-
ing, and manual judgement of queries and responses, both
of which are labor intensive, we were unable to perform de-
tailed evaluation with the full set of 100,000 queries. Instead,
a randomly selected 1,000 query subset is used for our more
detailed manual evaluations. Out of these 1,000 queries, we
found through manual analysis that 793 are long tailed.

6.2 Query Topics and Identifying the Long Tail
In most query log studies, the queries are categorized ac-

cording to topic to give a representation of the types of
queries being submitted. Although this type of categoriza-
tion is useful for that purpose, for our evaluation these cat-
egories do not help in deciding whether queries are part of
the long tail of queries we wish to evaluate. Figure 3 il-
lustrates the published questions per category on ChaCha’s
website [38]. This system of categorization by topic is sim-
ilar to previous studies [12, 13, 36]. From these categories
it is unclear whether topics such as “Entertainment” and
“Travel” could map to verticals or are too broad and should
be directed to our system.

Further dividing topics into sub-topics (using ChaCha’s
published breakdowns) reveals that some of these finer gran-
ularity of sub-topics are directly mappable to verticals: e.g.
“Yellow Pages” and “Definitions” may be mapped easily to
data sources at “yellowpages.com” or “dictionary.com” with
little effort. Other sub-topics are still too broad for a simple
vertical (e.g. the sub-topics of “Politics & Gov.” such as
“Law” or “World Governments”).

Each question from ChaCha has an associated set of top-
ics it belongs to as assigned by ChaCha. Table 3 lists the
top 10 most highly represented sub-topics that identified in
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Table 3: ChaCha top sub-topics by percentage and
existence of potential verticals

Topic % of total
Questions

Existing
Vertical?

Celebrities 10.6% no
Movies
(not show times)

9.0% no

Yellow Pages 8.9% yes
Definitions 8.1% yes
Music 8.5% no
Relationships 7.1% no
Food & Drink 5.4% no
Conditions &
Illness

4.8% no

Animals & Plants 4.6% no
Games 4.5% no

Table 4: Example questions from ChaCha (including
spelling errors)

Question

“who do think is gonna win the nba game tonight cavs vs
magic”
“what does tipo mean in spanish”
“what is the difference between hot and cute in a girl”
“what is the purpose of a widows peak”
“does the subaru wrx still come in hatchbacks”
“can you list all beastie boys albums chronigically”
“when they give you the death penalty what do they in
sect you with”
“what and when is the highest scoring basketball ever in
the nba”
“why does the rainbow represent gayness”
“is there eternal life”

our sample (103 topics total), the percentage of questions
belonging to these sub-topics, and whether there are corre-
sponding verticals that are implemented in any existing SMS
search systems. The sum of the percentages of the complete
table do not add up to 100 because questions may belong
to more than one topic. Certain topics such as “Celebri-
ties” have online databases such as Internet Movie Database
(IMDB) which could easily be used as a source of structured
information to answer queries, and implementing verticals
on top of these would not be difficult. Using the sub-topics,
we removed queries from our 1,000 query corpus that do
not have existing verticals in any existing automated SMS
search system to identify the long tail queries (793 long tail
queries).

These remaining queries are exactly long tail questions
SMSFind is designed to answer. Several examples are listed
in Table 4. The question distribution across sub-topics and
the diversity of questions in general suggests that mobile
user information needs even on low-end devices are more
diverse than previously demonstrated [13]. This may be
due to the more expressive input modality of voice or the
user’s perception of the system as being highly intelligent.
We defer a more detailed comparison between these mobile
search patterns and those in the literature to future studies.

Table 5: Summary of SMSFind results
Input, Output % Correct

Mixed, Snippets 57.3%
Long Tail, Snippets 47.8%
Long Tail, N-Grams 22.9%
Long Tail (w/hint), TF-IDF Snippets 20.2%
Long Tail (w/out hint), TF-IDF Snip-
pets

5.2%

Long Tail Unmodified Queries, Snip-
pets

16.1%

Long Tail Unmodified Queries, N-
Grams

6.7%

6.3 Baseline Evaluation
We conduct a few baseline evaluations of our system using

our sample of 1,000 queries from ChaCha containing both
vertical and long tail queries. We modify these queries as-
suming the user understands how to use the system and is
willing to enter keywords along with a hint term rather than
a natural language question. For each ChaCha query we
rewrite the query solely by removing and reordering words
given that we have knowledge of how the system works and
know what would likely be a good choice for the hint term.
As an example, “what are the symptoms of chicken pox” is
rewritten as “chicken pox symptoms”.

Using these queries we find that our system (including
redirection to existing verticals) results in 57.3% correct an-
swers. In comparison, Google SMS returns correct results
for only 9.5% of these queries. We note that the low per-
formance of the Google SMS could be due to a variety of
reasons that we discuss in Section 7, and the result is pro-
vided here only for reference.

What is more interesting is if we remove the queries that
are redirected to existing verticals. To focus on the core
SMSFind algorithm, we consider only the performance of
the SMSFind algorithm on the 793 long tail query subset.
All further evaluation in this section is conducted with this
set of 793 long tail queries. Table 5 summarizes the results
of our evaluation. We find that for the long tail queries
SMSFind returns 47.8% correct results. Furthermore, if we
consider only the highest n-grams returned rather than the
entire snippet, the performance drops to 22.9%. These re-
sults broadly indicate that the raw performance of SMSFind
has significant room for improvement, and returning snippet
answers generally results in better performance.

We observed earlier that there are issues with readabil-
ity, but what do the snippet results actually look like? A
representative set of examples is shown in Table 6 for both
correct and incorrect results. Compared to the ChaCha hu-
man written responses we observe that the readability of
our snippets is poor and could be improved; however, find-
ing the optimal snippet construction is a separate problem
where existing techniques could be applied [35].

6.4 Is Distillation Using N-grams Beneficial?
Since we are returning snippets rather than n-grams, it is

natural to ask whether n-grams are necessary or if ranking
snippets alone would perform just as well. To confirm that
the intermediate distillation stage using n-grams is beneficial
we compare against a simple per-term TF-IDF approach.
In the first portion of this experiment we gather SMS sized
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Table 6: Example questions with snippet answers returned by our system
Original Question Example Snippet Answer Judged Cor-

rect?

“how many packs of cigarettes are in a pack” “to my contacts block user 10 packs and 200
cigarettes in a carton 3 years ago 0 rating good
answer 0 rating bad answer report”

“yes”

“what does satine die from in moulin rouge” “for a motion picture television or other visual me-
dia edit soundtrack main article moulin rouge mu-
sic from baz luhrmann’s film songs”

“no”

“what rush album does natural science come from” “seventh album permanent waves and the last of
their by the way that really does kick *ss cygnus-
x1.net a tribute to rush album review”

“yes”

“what is the least expensive state to live in” “the wholesale price which is adjusted quarterly
cigarette tax several states are continuing to raise
excise taxes on cigarettes and other”

“no”

“what is the world record for the most hot dogs
eaten in ten minutes”

“contest results 2008 nathan’s hot dog eating con-
test 10 minutes friday july 4 2008 no name hot
dogs 1 tie joey jaws chestnut u.s”

“no”

snippets directly using a 140 byte sliding window across all
documents. In this second portion of the experiment, we do
the same thing except the snippets (dj) are scored based on
the sum of the standard TF-IDF scores as the metric for
each of the i terms (ti) of the query.

(tf -idf)i,j = tfi,j × idfi

where

tfi,j =
ni,j

P

k
nk,j

With ni,j is the number of occurrences of the considered
term ti in snippet dj , and the denominator is the sum of
number of occurrences in all terms in snippet dj . and

idfi = log
|D|

|{d : ti ∈ d}|

With |D|: total number of snippets and
|{d : ti ∈ d}| : number of snippets where the term ti appears

We find that with only TF-IDF, the correct result is re-
turned in only 5.2% of queries. The results of the per-snippet
correctness are shown in Table 5 for comparison. With the
hint term used in conjunction with TF-IDF 20.2% of queries
are correctly returned. Overall, both naive TF-IDF and TF-
IDF with a hint term return worse results than with the
intermediate distillation using n-grams.

6.5 Returning Multiple Snippets
It is conceivable that for the queries that are not answered

well, such as vague queries or explanations, slightly longer
snippets or more results could improve our results. The ap-
plication may allow multiple SMS messages to be requested
in the form of a “more” link. To explore this possibility we
experimented with returning multiple snippets. We compare
two different snippet selection methods to improve result
diversity. In both methods, we first order the snippets by
rank. The first method is to return a snippet for each of the
top ranked n-gram results. The second method returns only
snippets for the top ranked n-gram result, but requires that
the returned snippets are from different occurrences of the
hint. We find that as more results are returned, the num-
ber of queries answered increases slightly (1 - 5%) for each

additional response returned. Both methods show a similar
rate of improvement, but the first method of maximizing
n-gram diversity consistently performs better by approxi-
mately 10%.

6.6 How Important is the Hint Term?
One meta question we have considered briefly in our eval-

uation is: can people actually come up with hints that are
useful in the first place? Requiring an additional hint term
is “acceptable” since existing services by Google and Yahoo
do exactly this, so our user interface is at least no worse than
the norm. However, it is interesting to see how sensitive our
system is to the existence of a well specified hint term.

We observe that if the hint term is not properly identi-
fied, and arbitrarily assigned as the last word in the query,
the correctness of the snippets drops from 47.8% to 16.1%
when compared to the modified queries. Table 5 shows the
performance of our algorithm on our queries without any
hint term identification or query modification for compari-
son. This suggests that the hint term is important to our
system and a generally useful mechanism for focusing on the
desired snippets of information.

7. DISCUSSION
The design of our system and the evaluation was moti-

vated by the SMS search problem. Our goal was to under-
stand how existing techniques would perform in this problem
domain and not to supplant or reinvent the vast amounts of
research in the Information Retrieval (IR) space.

7.1 Data Sets
We had initially experimented with Google Trends queries

and other desktop search logs, but found that most queries
were too ambiguous and did not match the type of queries
found in mobile environments. We decided that the ChaCha
dataset would provide more realism as to the actual queries
people would make. To get a sense of the query difficulty
and confirm that the ChaCha queries are actually “precision
oriented” we performed a cursory evaluation based on work
by Mothe and Tanguy [39] to evaluate the Syntactic Links
Span and Average Polysemy Value of the queries in our cor-
pus compared to those used in various TREC tracks. We
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confirm that for these two features our mobile questions are
significantly different from those in the question/answering
track. The closest match for these two features was the set of
“search query” format queries from the Million Query Track.

7.2 Difficult Types of Queries
In terms of the performance of our system, we observed

that the queries that are not answered properly regardless
of format are often ambiguous, explanations, enumerations,
problems that require analysis, or time-sensitive queries.
This is not surprising as many statistical techniques have
similar limitations. Our algorithm in particular requires
proximity to the hint term and we also expect the answer
to be only a few words long. Queries that are ambiguous
such as: “how many calories are in baked cod” are ambigu-
ous in the sense that the human intelligence was required to
assume that Long John Silver’s baked cod is nearly equiva-
lent to “baked cod”. Explanations are likely to require more
space to answer properly. We observe that queries such as
“how do i make an antenna for my tv? i have a wire hanger”
are unlikely to be answered within 140 bytes by even a hu-
man intelligence. Enumerations such as “words that rhyme
with long” are also difficult for SMSFind since the answer is
unlikely to all appear consecutively near any hint term in a
significant number of places on web pages. Analysis ques-
tions (e.g. “what is the least expensive state to live in”) are
problematic since the answer is not immediately available in
the text of web pages. Time sensitive information is difficult
for a combination of lack of web page sources and proximity
to a useful hint term. Given the ubiquity of these difficult
query types, it is somewhat surprising that our simple algo-
rithm is able to answer over half of the dataset.

7.3 Comparison to Existing Systems
The inclusion of Google SMS performance on our data set

is only to illustrate that the information needs of people us-
ing only voice and SMS to ask questions may not be captured
by that particular system of verticals. A direct comparison
between the two numbers is unreasonable since we have no
information as to the distribution of queries Google SMS
receives and how that compares to our test set. It is en-
tirely possible that the distribution of Google SMS queries
is different, and their verticals successfully satisfy a large
percentage of queries received by their service.

7.4 Pilot Deployment
We deployed our system with a small focus group of 40

users consisting of both urban slum residents and college
students in Nairobi, Kenya. Our pilot lasted for two weeks
during which users with low-end mobile phones and no data
plan found the service to be the most useful. Verticals were
not initially implemented in our pilot, and SMSFind was
tasked with answering all queries. We found in our initial
feedback session that people requested local business con-
tact information and other simple verticals which were not
being answered properly by SMSFind. To address this, we
implemented several verticals to increase query coverage.

After the inclusion of verticals with specific keywords, we
found that our users took time adjusting to the syntax of
requiring the hint/topic at a specific position of the query.
We are currently exploring possible improvements to both
the user interface and performance, and we expect to extend
our scale of deployment over the next few months.

7.5 NLP and Mobile Craigslist
Combining statistical and linguistic techniques in the con-

text of answering questions using the web has been thor-
oughly surveyed by Lin et. al. [40]. As part of future work,
we plan to incorporate more sophisticated statistical and
NLP techniques. Specifically within the NLP summariza-
tion literature, there are probabilistic models which learn
how important various factors of a given shingle are for text
summarization [26]. One fundamental distinction in SMS-
Find in comparison to NLP techniques is that the corpus
varies as a function of the search query; given a query, the
corpus for SMSFind is the search pages returned by a search
engine. Given a highly variable corpus, directly applying
existing NLP-based probabilistic models may not be appro-
priate since the model should be a function of the query.

To better understand this contrast, we briefly describe the
problem of SMS-based Mobile Craigslist where the goal is to
provide SMS-based search responses for Craigslist queries.
This is a problem we are currently exploring where prob-
abilistic models derived from NLP are directly applicable
since there exists a well-defined corpus for any given search
category (e.g. cars, hotels, apartments). Using this corpus,
we can use standard NLP techniques to learn the various
features for each category and derive a succinct summary of
each Craigslist posting for a category based on the features.
Hence, having a well-defined corpus substantially helps in
improving the accuracy of summarization.

8. CONCLUSION
There has been little work on SMS-based search for arbi-

trary topics due to, until recently, the initial lack of a well-
defined business case. The explosive growth in prevalence
of affordable low-end mobile devices throughout the world
has created a large market for mobile information services.
Since mobile users in many parts of the world use low-end
mobile devices with SMS as their primary data transport,
SMS-based search becomes a critical problem to address on
the path to enabling SMS-based services.

In this paper, we have presented SMSFind, an automated
SMS-based search response system that is tailored to work
across arbitrary topics. We find that a combination of simple
Information Retrieval algorithms in conjunction with exist-
ing search engines can provide reasonably accurate search
responses for SMS queries. Using queries across arbitrary
topics from a real-world SMS question/answering service
with human-in-the-loop responses, we show that SMSFind
is able to answer 57.3% of the queries in our test set. Al-
though more powerful IR and NLP techniques are bound to
improve performance, this work represents a foray into an
open and practical research domain.
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