
UjU: SMS-Based Applications Made Easy

Lu Wei-Chih† Matt Tierney‡ Jay Chen‡ Faiz Kazi‡ Alfredo Hubard∗
Jesus Garcia Pasquel∗ Lakshminarayanan Subramanian‡ Bharat Rao†

†Polytechnic Institute of NYU ‡New York University ∗CAME

uju.news.cs.nyu.edu

ABSTRACT
A significant fraction of mobile users in the rural develop-
ing world use low-end mobile devices and have restricted
data connectivity services due to a variety of economic fac-
tors. These devices have restricted capabilities with voice
and SMS remaining the primary communication channels.
The penetration of mobile information services in rural ar-
eas has largely been limited especially since all applications
are operator controlled and very few applications have been
adopted on a large scale.

This paper presents the design and implementation of UjU,1

a mobile platform that enables users to develop new SMS-
based mobile applications on top of a common platform.
Given that the SMS channel is extremely constrained to 140
byte messages, UjU is designed to support database-centric
applications that express and operate upon information in
structured formats. In UjU, specifying a new application is
equivalent to configuring an XML schema. Apart from ex-
porting a standard set of operations, UjU allows the devel-
oper to specify new application-specific operations as XML
forms. To make efficient use of the SMS channel, UjU sup-
ports a semantic compression engine that leverages the struc-
tured nature of the information transmitted. UjU includes
a simple reliability layer to cope with message losses and
uses a user-centric consistency model to handle data incon-
sistencies. We have configured and tested UjU for several
SMS-based applications and describe our experiences in tai-
loring UjU to develop five real-world applications in the ar-
eas of mobile microfinance and mobile healthcare; four of
them have been deployed in Ghana and Mexico.

1Uju is the Swahili word for “sent” as well as a shortening
of the Swahili word for “message.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM DEV’10, December 17–18, 2010, London, United Kingdom.
Copyright 2010 ACM 978-1-4503-0473-3-10/12 ...$5.00.

1. INTRODUCTION
The massive penetration of cellular services in de-

veloping regions around the world has fueled the emer-
gence of several development-centric mobile applications
and services especially in the context of healthcare, edu-
cation and microfinance. OpenXcode [25], OpenRosa [24],
ODK [33], FoneAstra [11], FrontlineSMS [15], RapidSMS [28],
OpenMRS [23],and Voxiva [31] are examples of a few
successful projects that have explored the use of mobile
phones as a low-cost computing platform for distributed
mobile health applications.

One of the fundamental roadblocks to large-scale adop-
tion of mobile applications and services has been that of
operational sustainability. From the device standpoint,
the software implementation of most mobile applica-
tions (except a few SMS-based applications) requires a
high-end mobile device (such as a smartphone) and is
typically too heavyweight for low-end mobile phones.
In addition, these systems rely on SQL database im-
plementations on standard TCP/IP networking stacks.
These in turn depend on GPRS network connectivity
which is feasible only in urban settings; in most rural
settings only voice and Short Messaging Service (SMS)
capabilities (140 byte packets) are available.

On the opposite end of the spectrum are lightweight
applications like FrontlineSMS [15] and RapidSMS [28],
which use the SMS channel and are designed for low-
end mobile devices. These systems require very little
infrastructure and low-end mobile phones are adequate.
The main drawback of these systems is that forms and
structured data do not influence the design of the mes-
saging system. The result is feature-poor systems using
ad-hoc messages and responses utilize the limited band-
width inefficiently.

To address these limitations, we present the design
and implementation of UjU, a mobile platform that en-
ables users to develop new SMS-based mobile applica-
tions on top of a common platform. UjU is a generic,
customizable platform that significantly simplifies the
design of new SMS-based applications. Given that the
SMS channel is extremely constrained with only 140
bytes available, most SMS-based applications leverage

1

a structured data format where the information trans-
mitted over the wire is limited. UjU explicitly assumes
the presence of an inherent data organization structure
within each application and any data manipulation op-
eration is treated as a simple fetch or update operation
on structured data.

The design of UjU makes two important contribu-
tions. First, UjU significantly simplifies the design of
new SMS based applications on top of a common plat-
form. Users with no programming experience can po-
tentially build new SMS based applications within a
short time period. Building an application on the top
of UjU is as easy as editing an XML file or using a web
form. Second, to minimize the operational cost of SMS-
based applications, UjU supports a semantic compres-
sion layer that minimizes the number of messages sent
over the air. To enhance the compression levels, UjU
allows users to aggregate several operations on to a sin-
gle message. UjU also supports a lightweight reliability
layer to handle message losses or reordering effects.

We have tested UjU across a wide-range of applica-
tions and have deployed different versions of the systems
in Ghana and Mexico. Using a detailed evaluation, we
show that UjU can: (a) reduce the time to create new
apps; (b) achieve high compression levels; (c) support
high levels of aggregation at both a record and opera-
tion level; (d) have a low overhead for providing relia-
bility. Together, UjU can reduce the operational cost of
applications. Moreover, it is possible configure a new
application Over-The-Air using few SMS messages.

We also demonstrate the utility of UjU using five
real-world applications: (a) a pharmacovigilance sys-
tem deployed in Ghana; (b) a low-cost drug-tracking
system developed for the Clinton Foundation; (c) a mo-
bile microfinance application deployed in Mexico; (d) a
customer service application for microfinance customers
in Mexico; (e) an essential drug list query application
for doctors, health workers and pharmacists which is a
transliteration of a drug list book used in Ghana. The
common takeaway message across all these applications
is that UjU simplifies application design and reduces the
operational cost of applications.

2. BACKGROUND AND RELATED WORK
In this section, we will first briefly describe motivate

why SMS-based applications and then discuss impor-
tant related work within the mobile application space.

2.1 Why SMS-based applications?
To motivate UjU, it is essential to understand why

would users want to use SMS-based applications. Ac-
cording to ITU[18], the penetration rate of mobile cel-
lular for developing regions is 49 per 100 inhabitants
with roughly 246 million mobile subscriptions in Africa.
However, the mobile usage is still low due to high usage

costs with an average monthly cost of 23% of monthly
gross national income per capital[18]. This is a signifi-
cant cost given that a large fraction of the population
earns less than US$2 per day. In addition, studies have
shown that the mobile usage does not increase propor-
tionally with increased income[27] suggesting that cost
remains the main factor for low usage levels. The same
study showed that mobile usage will significantly in-
crease if the costs are brought substantially down[27].
The current mobile phone usage rates are also relatively
high compared to public phone usage rates[27].

While usage remains currently very low, the low pur-
chasing power also forces users to buy very cheap low-
end mobile devices which cost roughly $20 per device[27].
Low-end devices come with very limited set of features
with voice and SMS remaining the primary communi-
cation channels available from these devices. It is not
clear whether smart phones will ever be able to break
the $40 barrier and be available as a cheap communi-
cation device for the low-end markets. The current and
projected price points of smart phones which support
extended data services are significantly higher than the
purchasing power of rural populations in developing re-
gions. Also, the real need for these sophisticated devices
is also far from established in developing regions.

Apart from basic communications, there has been a
growing drive among mobile operators to enhance the
range of mobile services in developing regions. SMS re-
mains the primary data communication channel avail-
able to most end-users with low-end devices and hence
is a popular platform for mobile applications. Data cov-
erage has remained relatively low in many rural regions
due to low user densities and low purchasing power. If
voice usage is currently extremely constrained due to
cost factors, the data services market is significantly
lower than the voice market in these regions; this has
remained a barrier for the adoption of data-connectivity
oriented services.

SMS is universally available in all areas with cellular
coverage and has been widely used in most developing
regions. A recent work by Oliver [22, 21] showed how
SMS can be used as a transport layer for building new
mobile applications.

2.2 Sample SMS Applications
Mobile banking and healthcare are two popular ar-

eas where the need and drive for new applications has
been immense. Every mobile operator in developing
countries have their own platform for mobile banking
mostly operating over SMS or USSD; the popular ones
being M-Pesa [5], GCash [3] and mCheck [6].

At the recent Mobile Health summit [7], nearly 400
different mobile health applications in the context of
developing regions were presented. SMS has been used
as a transport for several mobile health applications.

2

FrontlineSMS [15] has been used as a platform for build-
ing SMS applications in more than 20 developing coun-
tries. The popularity of FrontlineSMS can be attributed
to its ease of installation and use as well as its flexibil-
ity. Besides being used a data center, FrontlineSMS
can be an SMS HUB to retransmit messages to a cus-
tomized group. RapidSMS [28] is another widely used
open-source platform that provides a environment for
collecting data from a mobile device via SMS Text Mes-
sage. There are some successful mobile health applica-
tions,such as child count [29], which have been built on
the top of RapidSMS.

Several SMS-based counterfeit drug detection systems
have been developed. mPedigree [8] is an ongoing ef-
fort geared specifically towards combating the problem
of counterfeit drugs in the developing world (Ghana in
particular). Epothecary[26] is another similar system
which uses mobile camera phones for drug tracking.

Several major search engines have released their own
SMS based search services. Google SMS service[17],
Yahoo oneSearch[9], Chacha[2] and JustDial[4] are ex-
amples of SMS based web search services where the
end user can SMS a search query and obtain a search
response. SMSFind[12] is another recently developed
SMS based search service.

2.3 Other Mobile Platforms
Outside of SMS based applications, there have been

other popular non-SMS mobile application platforms in
the context of development centric applications. We
describe a few of these platforms. openXcode [25] is
a free open-source software solution for collecting and
management any kind of form based data on a mobile
device. It allows users to fill out a form and send the
information to a central control center from a mobile
device. JavaRosa[19] is an open-source platform for col-
lecting form base data as well. It supports XForms stan-
dard to create customized form for the user. Project
GATHER [16] and CommCare [13] are built on the
top of it. GATHER has developed a set of tools that
can collect data from different device in the developing
countries. CommCare aims to provide CHWs a plat-
form that support home-based care and social support
to HIV, tuberculosis and other chronic patients. Open-
MRS is an open-source application which provides an
extensible mobile medical record system. It has been
adopted by Millennium Villages [20], FACES [14] and
AMPATH [10]. Voxiva[31] is a commercial software
mHealth solution that has been widely used. A com-
mon requirement across many of these platforms is the
need for high-end mobile devices and the need for data
connectivity to operate, both of which may not be ubiq-
uitously available in rural settings.

3. SYSTEM OVERVIEW
In this section, we establish the goals of UjU. We then

elaborate on how UjU achieves those goals through our
design principles.

3.1 System Goals
We designed UjU around two goals:

1. For users without programming experience, make
producing SMS-based applications simple.

2. Given the cost of an SMS message transmission
and the 140 byte constraint of an SMS message,
make SMS-based applications operationally sus-
tainable.

Most users of SMS-based applications are not com-
puter programmers; however, they are able to use a
simple interface to create applications for their con-
text. For instance, most mobile health efforts focus
on transitioning from paper forms to electronic med-
ical records, which can be accessed and modified by
community health workers on the field using mobile de-
vices. We designed UjU as a framework that can gen-
erate new applications with simple configuration from
users without a programming background.

Operational sustainability is critical for any SMS-
based application since sending and receiving SMS mes-
sages are expensive operations. Mobile phone-based
projects are at the mercy of mobile operators to pro-
vide sufficient incentives for a large scale deployment;
without these incentives, making a project sustainable
has remains an elusive goal. To understand this bet-
ter, consider a case in Malawi, where health workers
use FrontlineSMS to update patient records via SMS
messages. For context, the estimated HIV prevalence
is 11.9% [30] of the 14 million person population [32],
thereby accounting for 1.5 million HIV-infected patients
in Malawi. The population covered by the mobile cellu-
lar network is 93% and one SMS message costs US$0.09.
Assuming that the health workers send a single SMS
message per month as an update per patient, the net
communication cost of the system across all patients is
US$135,000 per month. In the current program, a CHW
visits five patients per day, requiring altogether 10,000
CHWs. The current salary of a CHW is around US$60.
So, the total cost is US$(10000 * 60 + 135000)*12 =
US$2.4M per year. The communication cost alone is
high so incentives are essential to run a large scale pro-
gram.

3.2 Design Principles
In this section, we illustrate how specific design prin-

ciples of the UjU stack underpin the design of both the
server-side and client-side components of our system.

Figure 1 illustrates the UjU design stack. Similar to
conventional mobile application models, UjU assumes

3

UjU Applications
Structured Records

Semantic Compression
Reliability

Figure 1: The UjU design stack.

a centralized server communicates with users who use
applications on their mobile devices to fetch, update,
and search records on the central server. We designed
UjU for applications that operate over structured data,
which allows us to leverage structure for more efficient
SMS channel usage. Finally, we also implement lightweight
mechanisms to handle the reliability challenges of SMS.

3.3 Guiding Principles
We now highlight the five design principles for the

UjU stack.
1. UjU Application Specification: In UjU, specifying

a new application is equivalent to configuring an
XML file; the current interface allows users to cre-
ate their forms using a simple web interface. Fig-
ure 2 presents the current version of the UjU web
interface. UjU supports a standard set of data
manipulation and search operations but also al-
lows the user to create new operations using simple
XML forms.

2. Semantic Compression: To make efficient use of
the underlying SMS channel, UjU supports a se-
mantic compression layer that semantically encodes
a structured stream and achieves a high compres-
sion ratio in comparison to standard compression
techniques.

3. Aggregation of Operations and Records: To en-
hance the channel utilization and minimize oper-
ational costs, UjU caches updates and aggregates
multiple operations or records into a single session.

4. Lightweight Reliability: Given that the underlying
SMS channel is unreliable, UjU supports a lightweight
reliability layer that supports session-level reliabil-
ity and uses delayed acknowledgments which are
piggybacked in normal data messages.

5. Consistency model: Since intermittent updates may
introduce data inconsistencies, UjU supports a flex-
ible consistency model that allows administrators
to handle inconsistencies. The default is an append-
only model where every update is appended to a
list and every fetch operation retrieves the last few
updates from the append list.

Next, we elaborate on these five design principles.

3.3.1 Application Specification Made Easy
UjU is designed for supporting field level manipula-

tions for structured records. UjU allows users to specify
an application as an XML configuration file which ba-
sically captures the structure of records within an ap-
plication and the parameters associated with each field.
UjU supports two different type of XML configuration
files, which are Application Description and Form De-
scription. We elaborate on these next.

Application Description: An Application Descrip-
tion XML file is the primary application specification
file that defines the structured record schema and their
associated data types. Each field, in the schema, has
three attributes: Field ID, Name, and Range. Field

ID is a unique identify number, which will be referenced
in the form description. Name of field will appear in the
database and the screen of the client’s mobile device.
Range is a special field that is required for semantic
compression. Figure 3(a) provides an example of the
application description. In this particular example, the
application id is “0” and its name is “CAME”. To al-
low several applications to be continuously used on top
of the same platform, every application is associated
with an application ID. This application has only one
database schema, which has 9 fields. To further simplify
specification, one can derive the XML specification from
a simple web form.

Form Description: The Form description defines
a specific operation and the fields that relate to the
operation. The best way to visualize an operation is
a simple SQL statement as illustrated in Figure 3(a).
Given any SQL operation, we can determine the cor-
responding form for that SQL statement. Figure 3(b)
is the example form description for the SQL statement
specified in Figure 3(c). In this form description, the id
is 1. This form belongs to a specified application with
an identity number 0. Every operator is associated with
an identity and this operation has an id 3.

UjU supports the following basic operations for any
application: Create, Update, Destroy, Fetch, Search.
The create and destroy operations allow users to create
and delete records. The Fetch operation allows the user
to fetch records that match a specific criterion. The
simple fetch operation allows the users to pick a spe-
cific field and specify a constraint based on the field.
The user interface also allows users to select multiple
conditions and combine them using an AND or an OR
clause. A user that needs a sophisticated fetch con-
straint needs to create a new XML Form description
for the operation.

The Search operation is a field-agnostic fetch opera-
tion in UjU. The search model in UjU is fairly simplistic.
Users can search for records based on a set of keywords
where the search operation treats all fields as a text
stream and outputs all records where the specified key-

4

Figure 2: The current UjU web interface for creating an application description XML file.

words appear in some field in the record.
Updates and Consistency Model: The update

operation allows the user to update one or more fields in
a given record where we explicitly assume that a record
is identified by a specific identifier known to the user
or has a secondary key based on name or alternative
parameters as a unique key. Given that users may ac-
cess the database in an intermittent fashion, UjU uses
a default append-only consistency model where all up-
dates to a given record are appended to an append list.
UjU explicitly exposes the inconsistency at the server
to the administrator who is responsible for reconciling
inconsistencies. Fields within UjU can be marked as ei-
ther one-time modify or append-only or last-modify. The
one-time modify fields are set during record creation
(primary key values) and the append-only fields are not
modified but maintained as an append-list. Users can
also explicitly set the application or individual fields
to last-modify which retains the last updated value in-
dependent of the order of updates. Append-lists are
associated with a list of bounded length.

3.3.2 Semantic Compression and Aggregation
The goal of semantic compression is to minimize the

number of messages that UjU uses for the various opera-
tions communicating with the server. Unlike traditional
compression algorithms, the basic idea of semantic com-
pression is to derive a compression codebook to repre-
sent each field (or a group of fields) in its lowest entropy
using the smallest number of bits.

Consider a specific field and the universe of values
that the field can take. A semantic compression code-
book will generate a specific code for every possible
value occupied by the field. Given the relative fre-

quency of occurrence of every value in the universe, one
can generate a Huffman code for the field which will
guarantee that the field is represented using the lowest
number of bits. For most applications, this frequency
information is either not available or may change with
time. An alternative simpler coding scheme is to used a
fixed-length representation per field. If a field occupies
n states, then the field can be represented using logn
bits. If the universe of values for a field is unknown, we
can adopt one of two strategies we simply associate the
field with a fixed length (with no compression).

While this represents a relatively simple coded repre-
sentation, we have also developed a joint-coding frame-
work where the universe of fields is known or partially
known. The basic idea is to measure the joint en-
tropy of different fields and join multiple fields which
are strongly correlated with each other. One can re-
cursively apply the joint entropy till individual fields
are not correlated with each other; i.e., joint entropy is
comparable to the sum of the individual entropies. We
do not adopt this joint entropy coding in the basic UjU
codebase.

UjU simplifies the ability for the application to spec-
ify the universe associated with each field. UjU sup-
ports the following 5 basic data types: integer, string,
single choice, multiple choice, set. Integers can be asso-
ciated with a range value which automatically specifies
the fixed-length code. Similarly string is a fixed-length
code. Single choice is specified by logn bits for the n
choices and multiple choice is represented using n bits.
The set function allows users to specify a universe of
values that can be used to derive the compression code.
The universe is pre-specified in the application config-
uration file; hence the client and server can derive the

5

<?xml version="1.0" encoding="UTF-8" ?>
<application id="0" type="0" name="CAME">
<schemas total="1">
<schema id="0" name="client">
<fields total="9" primary_field_id="0">
<field id="0" name="Client ID" range="24"/>
<field id="1" name="Group ID" range="16"/>
<field id="2" name="Week’s Number" range="8"/>
<field id="3" name="Saving" range="18"/>
<field id="4" name="CAME Capital" range="18"/>
<field id="5" name="Interciclo Capital" range="18"/>
<field id="6" name="Default" range="18"/>
<field id="7" name="Late Payment Times" range="8"/>
<field id="8" name="Miss Meeting Times" range="8"/>

</fields>
</schema>

</schemas>
</application>

(a) Application Description XML file example.

<?xml version="1.0" encoding="UTF-8" ?>
<form id="1" application="0" operation="3" name="Client Info">
<table>
<schemas total="1">
<schema id="0">
<fields total="3" logical="AND" >
<field id="0" operator="Equal to"/>
<field id="1" operator="Equal to"/>
<field id="2" operator="Less than"/>

</fields>
<fetch total="6">
<field id="0"/>
<field id="1"/>
<field id="2"/>
<field id="3"/>
<field id="4"/>
<field id="5"/>

</fetch>
</schema>

</schemas>
</table>

</form>

(b) Form Description XML file example.

SELECT ‘Client ID‘ ‘Group ID‘ ‘Week’s Number‘
‘Saving‘ ‘CAME Capital‘ ‘Interciclo Capital‘
FROM ‘CAME‘.‘client‘
WHERE ‘Client ID‘ = 485080
AND ‘Group ID‘ = 17291
AND ‘Week’s Number‘ < 5

(c) SQL statement corresponding to the ex-
ample forms.

Figure 3: We present a unified example for the how to create a simple application with the components
of UjU: application description, form description, and the generated SQL.

compression code directly.
To achieve better compression, UjU supports aggre-

gation at both the operation level and the record level.
To reduce the number of messages, the client maintains
a queue of recent operations. When the queue has suffi-
cient operations to fill a single SMS message, the client
sends a batch of operations to the server. Similarly,
multiple records can be compressed into a single mes-
sage in the response from the server.

3.3.3 Lightweight Reliability
Since, SMS message delivery is not 100 percent re-

liable, nor are the messages that do arrive guaranteed
to be in order [21]. Recent work by Oliver [22] has
proposed the use of SMS as a transport channel. Our
lightweight reliability is a simplified version of the trans-
port presented by Oliver. Implementing a reliability
model similar to TCP/IP would be excessively com-
plex and expensive over SMS. Also, protocols that re-
quire multiple rounds of acknowledgements are out of
the question since each message incurs a relatively high
cost. To keep the cost as low as possible for the user,
we propose a thin layer of reliability.

UjU uses an intermittent communication model be-
tween the mobile device and the server which is divided
into sessions. A session is a two-way communication be-

tween the client and server. Most operations are client
driven in UjU. During a session, the client sends a string
of SMS messages to the server followed by a string of
SMS messages in the reverse direction. Every session is
associated with a 8-bit identity and a session can have
up to 16 messages in each direction. Every message in
either direction contains a 4-bit sequence number to in-
dicate the message in the session. The 16 message limit
is an artificial bound to simplify the design.

UjU uses three communication phases in a session. In
the first phase, the client initials a session with a new
session identifier and sends an aggregate stream of SMS
messages. In the second phase, the server responds with
the responses along with 16-bit bulk acknowledgment
along with the responses to the client operations. If
the response does not fit within 16 messages, the server
needs to initiate a new session. All messages are se-
mantically compressed to reduce the number of mes-
sages. If any message is lost or received out of order,
the client or the server waits for a short period of time,
before sending a NACK message with the unreceived
messages. In the final phase after a round of interaction,
the client can either immediately acknowledge receipt of
the records to the server or can use lazy acknowledge-
ments to provide an acknowledgement at the beginning
of the next session. The lazy acknowledgement does

6

Figure 4: An example application written on
J2ME for UjU.

save one additional SMS message at the client.
In general, the reliability layer is a batching based

solution which does not guarantee perfect reliability but
operates under the assumption that most SMS messages
are correctly delivered. Under this protocol, a session
may not complete only if : (a) all messages from client
to server are lost; (b) all messages from server to client
are lost.

4. IMPLEMENTATION
In this section, we describe some of the important

implementation details of UjU. We elaborate on the nu-
ances of our terminology as well as explore the client-
and server-side details of UjU.

4.1 UjU Client
The primary role of UjU mobile phone client-side soft-

ware is interacting with a remote database through SMS
messages. Our client-side software is implemented as a
J2ME application and has been tested across different
Nokia phone models (Figure 4). UjU requires the server
to specify a User Data Header (UDH) to enable the UjU
client to receive the SMS message; if not specified, the
mobile device will place the SMS message into the nor-
mal message inbox instead of passing the SMS message
to the UjU client application. Considering the limita-
tion of storage space on the mobile device, UjU stores
only the critical information from the configuration file
and does not store the entire XML file; this reduces the
size of the configuration file and allows UjU to support
many applications simultaneously. UjU uses the Record
Management System (RMS) functionality in J2ME to
maintain the configuration files and the individual local
databases as row data. This allows UjU to store data in
flash memory.

4.2 UjU Server
A deployed UjU server has the primary function of

receiving SMS messages and, if necessary, sending re-
sponse SMS messages.

UjU leverages Kannel, an open-source Short Message
Service Center Gateway, or SMSC Gateway. It presents
an HTTP and HTTPS request interface for applications
to receive and send SMS messages. Depending on the
type of SMSC, Kannel can use either AT commands to
communicate with the GSM modem or a set of APIs/S-
DKs provided by the wireless carrier. Our current im-
plementation uses a Samba 75 GSM Modem and Kannel
uses AT commands to communicate with the modem.

The basic access model of UjU involves a client appli-
cation running on the user’s mobile phone. The client
application accesses the remote database by sending
and receiving SMS messages to and from the server’s
SMSC gateway.

The SMSC gateway will distribute the messages to
UjU’s server, which will first decode the messages. This
decoding is necessary since most of the bits in the re-
ceived SMS message are semantically compressed. Parse-
able header information in the SMS message indicates
to the server which application description to use to
semantically decompress the bits of the SMS. This ap-
plication description information is fetched from the lo-
cal “Application Description” database table and used
to decompress the SMS message data. The final SQL
query is made to the application’s own database table
based on the contents of the SMS message. If necessary,
a return SMS message is prepared based on the original
query and sent.

4.3 Creating Applications
Creating an application consists of two steps: (1) cre-

ating the Application Description and (2) creating
a Form Description for each desired operation.

To clarify the discussion on supported operations, we
present the following definitions. A transactional oper-
ation refers to operations that affect the stored state of
an application; e.g., updating a record on the server is a
transaction operation. Create, Update, Fetch, Destroy,
and Count are already implemented transactional op-
erations. A logical operation is a function whose input
are data and whose output is a single value; e.g., the
sum of fetched numeric values.

Currently, our system comes with built-in basic trans-
actional operations for creating new form descriptions.
For future work, our system will automatically allow
users to define their own logical operations with the
web interface.

A applications consists of a series of input fields. When
an application writer specifies an application using our
web interface, the web service automatically generates
a downloadable XML file of the application description.

7

Currently, a user may fully specify their application
description using our web interface.

5. EVALUATION
In this section, we present the evaluation of UjU across

a set of sample SMS-based applications to illustrate the
ease of application specification and the effectiveness of
semantic compression. Specifically, we show that: 1)
creating a simple application only takes 15 minutes and
one can compress an application configuration file to be
transmitted over-the-air in few SMS messages; and 2)
UjU supports high levels of semantic compression and
can aggregate several operations/records into a single
SMS message.

5.1 Application Specification

5.1.1 Time to Create an App
We first evaluate the required time for creating an

application on the top of UjU. We present evaluation
based on a collection of form-based applications used in
a variety of contexts, such as patient records, Craigslist,
epidemiology. We list the time for creating applications
in table 1. It only takes 15 minutes to create a very
simple application for BMI records. This application
only contains 10 fields, Patient ID, Sex, BMI value, etc.
In addition, the configuration for the basic operations
can also be automatically derived.

The creation time for an application is fully depen-
dent on the number of fields and number of choices in
the single or multi choice field. Taking Patient Intake
Form as an example, there are only 20 fields in the ap-
plication. However, there are 103 choices in this ap-
plication. Thus, this application takes more than 55
minutes to create.

5.1.2 Size of Configuration file

Application Description Form Description
Client Server Client Server

Patient Intake Form 1966 9075 376 2805
HIV/AIDS Diagnosis Form 1041 3990 338 2369
Used Car 359 1732 255 1963
Top 10 Digital Camera 924 4457 277 1886
Case Report 273 1425 203 1929
BMI 276 1372 200 1929

Table 2: Size of Configuration File (in bytes)

Considering the limited storage space on the mobile
device, the size of configuration files should be as small
as possible. Given that low-end mobile devices do not
export a standard database interface, UjU uses Record-
Store Management System, or RMS, on the client side.
RMS is part of the J2ME environment and allows devel-
opers to record data in flash memory. A configuration
file is represented by a single XML file. In the XML
file, developer defines an Element and appends several

attributes belonging to that element. An example of el-
ements in the configuration file of an application might
be:

<type id="1" name="integer" range="17"/>

<field id="0" name="Patient"

type="1"/>

While this representation can potentially consume a
lot of space, we can use the same semantic compression
technique to represent an application configuration file
as well as the operator-level configuration files. Table 2
shows the total size of all configuration files for differ-
ent applications in bytes. The memory footprint of the
configuration files are extremely small and most appli-
cations and operations can be transmitted to the client
(Client configuration file) using a few SMS messages.
While simple applications can be transmitted to the
client in 2-3 SMS messages, complicated applications
with several entries may consume up to 15 SMS mes-
sages. Individual operations can be transmitted to the
client in less than 2-3 SMS messages. This allows for a
powerful paradigm where SMS applications can be in-
stalled over the air using very few messages, which we
will explore in future work.

5.2 Semantic Compression
To evaluate semantic compression, we consider the

same six applications and compute the number of bits
required for representing a single operation and a re-
sponse. Creating/returning an entire record is the most
space-consuming task for both the client and server. Ta-
ble 3 shows the size of a record (in bits) after semantic
compression. Across all these forms generated from dif-
ferent real-world settings, UjU can condense each form
roughly 200-400 bits per record. In the worst case, for
certain large forms, UjU may consume close to 600-700
bits to represent an entire record. We note that the
same forms represented in text format can consume a
few KB even after Gzip.

Such a compact representation allows UjU to aggre-
gate multiple records in a single SMS message. In the
best case, UjU is able to transmit 8 records into one sin-
gle SMS message. This level for aggregation represents
a lower bound since these are create operations where
the entire record is transmitted over the wire.

Most common operations fetch or update very few
fields within the existing records. Under such condi-
tions, UjU can support much higher compression levels.
In the case where users are interested in fetching only
specific fields, UjU allows users to easily specify these
fields using a simple selection interface on their mobile
device. We evaluate this using the Patient Intake Form
where we consider two different fetch operations will
only fetch the patient important medical information
or emergency contact information (along with basic pa-
tient information). Table 4 shows the result that UjU

8

Number of Fields
Integer Date Generic String Name Multiple Choice Single Choice Boolean Total Create Time (minutes)

Patient Intake Form 19 2 12 6 0[0] 3[103] 0 40 55
HIV/AIDS Diagnosis Form 13 9 1 1 0[0] 5[15] 5 25 35
Used Car 5 1 1 1 1[12] 0[0] 1 9 18
Top 10 Digital Camera 2 1 1 0 0[0] 2[59] 0 6 30
Case Report 6 2 2 0 0[0] 1[2] 0 11 15
BMI 4 2 2 1 0[0] 1[2] 0 10 15

Table 1: Time for members of our lab to create an application on top of UjU.

bits/record record/message
Patient Intake Form 674 1
HIV/AIDS Diagnosis Form 188 5
Used Car 207 4
Top 10 Digital Camera 116 8
Case Report 231 4
BMI 262 3

Table 3: Required bit per record

bits/record record/message
Fetch Emergency Content 206 5
Fetch Patient Content 159 6

Table 4: Fetch Interesting Fields

can accommodate 5-6 records in a SMS message includ-
ing the protocol header bits. Compared to fetching an
entire record, the relative cost of this fetch decreases by
a factor of 5.

What we have shown so far is the number of bits
per record used by UjU. Most operations of UjU can be
represented using much fewer bits. One can view an
operation as a procedure call with parameters. In UjU,
every application and every operation within the ap-
plication has a unique ID which represents a few bits.
Apart from these two, the parameters corresponding to
a fetch operation is the list of positions with the cor-
responding search constraint. In practice, we find that
most fetch and update operations can be represented in
much lower than 100 bits.

In summary, semantic compression can achieve high
compression ratios and provide high levels of operator
and record level aggregation for a single SMS message.

6. REAL-WORLD APPLICATIONS
In this section, we present the details of the field de-

ployment of UjU. We provide a detailed account of the
utility of UjU in five different scenarios: i) a pharma-
covigilance system in Ghana, ii) a low cost drug tracking
system iii) a mobile microfinance application deployed
in Mexico, iv) a drug list query application for doctors,
pharmacists and health workers, and v) a customer ser-
vice application for microfinance customers in Mexico.

6.1 Pharmacovigilance system
In Ghana, we worked with Korle-Bu Teaching Hos-

pital to build a Pharmacovigilance system. The goal of

this system was twofold: i) track the side effects of a
drug among patients, ii) remind patients to take their
medication on a timely basis. We briefly describe them
below.

We divide around 100 drugs into 15 categories. For
each category, we record the patient information, med-
ication information such as dosage and schedule. Pa-
tients can fill out the form (on the phone) and up-
date the database with the current information. Doc-
tors have the option to fetch the records stored on the
database according to the medication or side-effect.

The second application was a patient reminder sys-
tem in Ghana which sends out a SMS text message to
remind patients to take their medication according to
the prescription. As dosage varies for each prescription,
the patients needed to be reminded on a timely basis.
Our system will automatically generate the text mes-
sage according to the prescription, so that the patients
are aware of both the time and medication that they
need to consume.

We are currently working with Tigo Mobile, a mobile
operator, to distribute the application on a larger scale.
Tigo Mobile has volunteered to provide SIM cards to
patients in this pilot study.

6.2 Drug List
Ghanaian doctors and health workers use a book ti-

tled Ghana Essential Medicines List which contains a
list of commonly used drugs with usage, dosage infor-
mation, and the level of care required for a particular
ailment or disease. The pharmacists can check the us-
age of the medication on the prescription (by referring
to Ghana Essential Medicines List) before they give the
drug to patients. The goal of this deployment is to build
a SMS based system that acts as a simple lookup ser-
vice to Ghana Essential Medicines List and that is easy
to use, for a pharmacist.

Ghana Essential Medicines List contains 29 different
categories, of which some categories contain only few
drugs. So, we divided the list into 14 categories and
bundled up the rest of the (15) categories into a sepa-
rate category. The system was designed to be a fetch-
only application. The information in the database is not
supposed to be modified by the user or client. Beside
the information list in Ghana Essential Medicines List,
we also put the potential side effects corresponding to

9

each drug. Thus, patient can easy fetch the drug in-
formation and check for symptoms of the side effects of
the drug. This system has been developed for Korle-Bu
Hospital.

6.3 Microfinance
CAME is a microfinance institution in Mexico City

that primarily provides loans in rural areas [1]. CAME
works on the concept of group lending. Group meeting
is one of its main aspects, where group of people living
in the nearby village gather on a weekly basis to either
accept or return loans.

In this deployment, we developed an application to
support the group meeting and help the CAME officers
to judge the credibility of the loanee. To judge the
credibility of the loanee, the CAME officer needs the
credit information of the loanee for the past 16 weeks.
The CAME officer used to rely on GPRS to fetch this
information from the CAME servers. Our application
stores and fetches the client information locally from the
mobile device and does not communicate to a central
server. The officer stores all the necessary information
pertaining to a group on the mobile device and then
leaves to the group meeting. This way, he can fetch the
client information locally without receiving any data
from a central server, which helps in reducing the data
costs.

We also implemented two additional functionalities.
The first set of operations concern the remote update
of information. It provides following functionality, i)
Fetching client information from server, ii) Updating
the payment information to server for each client, iii)
Creating a new record of Interciclo Loan, CAME credit.
(Interciclo is the loan amount in a cycle, where each
cycle is of 16 weeks)

The second set of operations deal with checking the
loan/balance of each client and updating their records
in the server. The set of operations is described as fol-
lows. Closing the Cycle procedure is executed at the
last week of the cycle and this procedure: i) Checks the
status of loan of each client and makes sure all clients
clean up the loan; ii) Distributes the earning from the
loan to each clients; iii) Renews the loan amount for
the next cycle; iv) Allows clients to deposit or with-
draw from the savings account; v) Updates the client
information to the server.

Compared to the current system which is running on
the Palm PDA, CAME officers found our application
easy to use due to its simple user interface and the use
of keypad on the low end mobile device. One officer felt
more comfortable typing the amount from the mobile
keyboard than using the touch screen. In the future,
we plan to add the functionality of printing the receipt
via a Bluetooth enabled mobile printer.

6.4 Customer Service
Most clients of CAME do not have Internet access.

The only way they can communicate with CAME is by
making a phone call which costs one peso per minute.
Customers typically experience a long wait time to talk
to the next available customer service representative,
which exacerbates the situation.

To improve the quality of customer service, we devel-
oped a system based on the SMS gateway in UjU. The
system can i) record clients feedback in the database,
ii) update clients information, iii) return requested in-
formation to client. With UjU, clients’ phone number
becomes their primary means of contact and CAME can
send information to their clients using SMS. The clients
can also report to CAME via SMS.

6.5 Drug Tracking
We developed an application called SmartTrack on

top of UjU to track the flow of high cost commodi-
ties such as antiretroviral drugs right from the supplier
down to the final pharmaceutical retailer. This applica-
tion was demonstrated to the Clinton Foundation sup-
ply chain group and we are hoping to roll out a version
of this system in a small district setting with their col-
laboration.

Consider a simple supply chain for antiretroviral drugs
comprising a hierarchy of suppliers, distributors and
customers. In order to make the flow of drugs reliable
and consistent along this chain, each link needs to be
able to inspect, record and report on the commodities
that pass through. SmartTrack accomplishes this us-
ing a platform that operates on a mobile phone with a
built-in camera and allows that phone to read and inter-
pret a product barcode and then compare that against
a central database to validate the product and record
its location. Here, the UjU database consists of the bar-
code reading, the mobile device number, time of update
and the location of the mobile device.

Every drug bottle or carton is tagged with a barcode
which uniquely identifies each product. Barcodes are
typically supplied by the drug manufacturer and gen-
erated from a secret key that makes it hard to create
counterfeit identifiers. The barcodes of every item re-
ceived at a port of entry are stored in a database housed
on a central server. Each intermediary point in the sup-
ply chain is managed by an agent who is equipped with a
pre-registered, SmartTrack loaded, mobile phone which
has a built-in camera to read the barcode information.
Upon receipt of any goods, the agent takes a picture of
the bar code and SmartTrack recognizes and registers
the barcode. This information is recorded in the cell
phone which acts as the local data store at each supply
chain point.

SmartTrack is versatile and adaptable and from a
supply chain standpoint, the system can be used in a

10

variety of ways, i) to monitor commodity flow in real
time at the granularity levels of a single pill bottle; ii)
to track inventory at the pharmacy outlet and provide
early detection of potential stock-outs; iii) to alert phar-
macists to drug expiry; iv) to check the authenticity of
pill bottles in order to prevent counterfeiting.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented UjU, a mobile plat-

form that enables users to develop new SMS-based mo-
bile applications on top of a common platform. It has
been designed around the context-specific goals of ro-
bustness, ease of use and cost-effectiveness, and the
more general goals of efficiency, reliability and consis-
tency. We have developed 5 different real-world applica-
tions on top of UjU, four of which have already been de-
ployed. We believe that UjU fills a significant gap in ser-
vice provision and makes it easy for non-programmers
to build their own SMS-based applications. UjU can
also help in getting past the dependence on mobile op-
erators to deploy new mobile applications and services
on a large scale.

In the future, we plan to explore several optimizations
to the current design. Depending on the consistency
level required for the application, a further optimization
could be to send the delta between the cached version
and the updated version of the record. We would also
like to enable application writers to define their own log-
ical operations using our web interface. Also, UjU cur-
rently only supports database search on the server side.
However, we are currently working towards extending
UjU to support web search via the APIs provided by
standard search engines such as twitter, Google, etc.
on the server side. Finally, the current implementation
of UjU only supports installing and updating an appli-
cation manually. However, the application installation
can itself be supported over the air.

8. REFERENCES

[1] CAME: Dinero con sentido.
http://www.came.org.mx.

[2] Chacha. http://www.chacha.com/.
[3] Gcash. http://www.gcash.com/.
[4] Justdial. http://www.justdial.com/.
[5] M-pesa. http:

//www.safaricom.co.ke/index.php?id=745.
[6] mcheck. http://main.mchek.com/.
[7] Mobile health summit.

http://mhealthsummit.org/.
[8] Mpedigree. http://www.mpedigree.org/home/.
[9] Yahoo one search.

http://mobile.yahoo.com/search.
[10] AMPATH.

http://medicine.iupui.edu/kenya/hiv.aids.html.

[11] G. Chaudhri, R. Borriello and W. Thies.
FoneAstra: Making Mobile Phones Smarter. In
NSDR, 2010.

[12] J. Chen, L. Subramanian, and E. Brewer.
Sms-based mobile web search for low-end phones.
MobiCom, 2010.

[13] CommCare.
http://www.dimagi.com/content/commcare.html.

[14] FACES. http://www.faces-kenya.org/.
[15] FrontlineSMS. http://www.frontlinesms.com/.
[16] Gather. http://www.gatherdata.org/.
[17] Google SMS. http://www.google.com/sms.
[18] International Telecommunication Union.

http://www.itu.int/.
[19] JavaRosa. http://code.javarosa.org.
[20] Millennium Villages .

http://www.millenniumvillages.org/.
[21] E. Oliver. Exploiting the Short Message Service

as a Control Channel in Challenged Network
Environments. In Challenged networks. ACM,
2008.

[22] E. Oliver. Characterizing the transport behaviour
of the short message service. In MobiSys ’10.
ACM, 2010.

[23] OpenMRS. http://openmrs.org/wiki/OpenMRS.
[24] OpenRosa. http://www.openrosa.org/.
[25] openXcode.

http://www.openxdata.org/Main/WebHome.
[26] M. Paik, J. Chen, and L. Subramanian.

Epothecary: cost-effective drug pedigree tracking
and authentication using mobile phones. ACM,
2009.

[27] M. Paik et al. The Case for SmartTrack. ICTD,
2009.

[28] RapidSMS. http://www.rapidsms.org/.
[29] RapidSMS Case Study.

http://www.rapidsms.org/case-studies/.
[30] UNAIDS. http://www.unaids.org/.
[31] Voxiva. http://www.voxiva.com/platform.php.
[32] WHO. http://www.who.int/countries/mwi/en/.
[33] A. Yaw, H. Carl, B. Waylon, L. Adam, T. Clint,

and B. Gaetano. Open data kit:building
information services for developing regions. ICTD,
2010.

11

http://www.came.org.mx
http://www.chacha.com/
http://www.gcash.com/
http://www.justdial.com/
http://www.safaricom.co.ke/index.php?id=745
http://www.safaricom.co.ke/index.php?id=745
http://main.mchek.com/
http://mhealthsummit.org/
http://www.mpedigree.org/home/
http://mobile.yahoo.com/search

	Introduction
	Background and Related Work
	Why SMS-based applications?
	Sample SMS Applications
	Other Mobile Platforms

	System Overview
	System Goals
	Design Principles
	Guiding Principles
	Application Specification Made Easy
	Semantic Compression and Aggregation
	Lightweight Reliability

	Implementation
	UjU Client
	UjU Server
	Creating Applications

	Evaluation
	Application Specification
	Time to Create an App
	Size of Configuration file

	Semantic Compression

	Real-world Applications
	Pharmacovigilance system
	Drug List
	Microfinance
	Customer Service
	Drug Tracking

	Conclusion and Future Work
	References

